\(\int \frac {(e x)^{7/2}}{(a-b x^2)^2 (c-d x^2)^{3/2}} \, dx\) [919]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 30, antiderivative size = 420 \[ \int \frac {(e x)^{7/2}}{\left (a-b x^2\right )^2 \left (c-d x^2\right )^{3/2}} \, dx=\frac {(2 b c+a d) e^3 \sqrt {e x}}{2 b (b c-a d)^2 \sqrt {c-d x^2}}+\frac {a e^3 \sqrt {e x}}{2 b (b c-a d) \left (a-b x^2\right ) \sqrt {c-d x^2}}+\frac {\sqrt [4]{c} (2 b c+a d) e^{7/2} \sqrt {1-\frac {d x^2}{c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),-1\right )}{2 b \sqrt [4]{d} (b c-a d)^2 \sqrt {c-d x^2}}-\frac {\sqrt [4]{c} (5 b c+a d) e^{7/2} \sqrt {1-\frac {d x^2}{c}} \operatorname {EllipticPi}\left (-\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}},\arcsin \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),-1\right )}{4 b \sqrt [4]{d} (b c-a d)^2 \sqrt {c-d x^2}}-\frac {\sqrt [4]{c} (5 b c+a d) e^{7/2} \sqrt {1-\frac {d x^2}{c}} \operatorname {EllipticPi}\left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}},\arcsin \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),-1\right )}{4 b \sqrt [4]{d} (b c-a d)^2 \sqrt {c-d x^2}} \]

[Out]

1/2*(a*d+2*b*c)*e^3*(e*x)^(1/2)/b/(-a*d+b*c)^2/(-d*x^2+c)^(1/2)+1/2*a*e^3*(e*x)^(1/2)/b/(-a*d+b*c)/(-b*x^2+a)/
(-d*x^2+c)^(1/2)+1/2*c^(1/4)*(a*d+2*b*c)*e^(7/2)*EllipticF(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2),I)*(1-d*x^2/c)^
(1/2)/b/d^(1/4)/(-a*d+b*c)^2/(-d*x^2+c)^(1/2)-1/4*c^(1/4)*(a*d+5*b*c)*e^(7/2)*EllipticPi(d^(1/4)*(e*x)^(1/2)/c
^(1/4)/e^(1/2),-b^(1/2)*c^(1/2)/a^(1/2)/d^(1/2),I)*(1-d*x^2/c)^(1/2)/b/d^(1/4)/(-a*d+b*c)^2/(-d*x^2+c)^(1/2)-1
/4*c^(1/4)*(a*d+5*b*c)*e^(7/2)*EllipticPi(d^(1/4)*(e*x)^(1/2)/c^(1/4)/e^(1/2),b^(1/2)*c^(1/2)/a^(1/2)/d^(1/2),
I)*(1-d*x^2/c)^(1/2)/b/d^(1/4)/(-a*d+b*c)^2/(-d*x^2+c)^(1/2)

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 420, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {477, 481, 541, 537, 230, 227, 418, 1233, 1232} \[ \int \frac {(e x)^{7/2}}{\left (a-b x^2\right )^2 \left (c-d x^2\right )^{3/2}} \, dx=\frac {\sqrt [4]{c} e^{7/2} \sqrt {1-\frac {d x^2}{c}} (a d+2 b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),-1\right )}{2 b \sqrt [4]{d} \sqrt {c-d x^2} (b c-a d)^2}-\frac {\sqrt [4]{c} e^{7/2} \sqrt {1-\frac {d x^2}{c}} (a d+5 b c) \operatorname {EllipticPi}\left (-\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}},\arcsin \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),-1\right )}{4 b \sqrt [4]{d} \sqrt {c-d x^2} (b c-a d)^2}-\frac {\sqrt [4]{c} e^{7/2} \sqrt {1-\frac {d x^2}{c}} (a d+5 b c) \operatorname {EllipticPi}\left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}},\arcsin \left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right ),-1\right )}{4 b \sqrt [4]{d} \sqrt {c-d x^2} (b c-a d)^2}+\frac {e^3 \sqrt {e x} (a d+2 b c)}{2 b \sqrt {c-d x^2} (b c-a d)^2}+\frac {a e^3 \sqrt {e x}}{2 b \left (a-b x^2\right ) \sqrt {c-d x^2} (b c-a d)} \]

[In]

Int[(e*x)^(7/2)/((a - b*x^2)^2*(c - d*x^2)^(3/2)),x]

[Out]

((2*b*c + a*d)*e^3*Sqrt[e*x])/(2*b*(b*c - a*d)^2*Sqrt[c - d*x^2]) + (a*e^3*Sqrt[e*x])/(2*b*(b*c - a*d)*(a - b*
x^2)*Sqrt[c - d*x^2]) + (c^(1/4)*(2*b*c + a*d)*e^(7/2)*Sqrt[1 - (d*x^2)/c]*EllipticF[ArcSin[(d^(1/4)*Sqrt[e*x]
)/(c^(1/4)*Sqrt[e])], -1])/(2*b*d^(1/4)*(b*c - a*d)^2*Sqrt[c - d*x^2]) - (c^(1/4)*(5*b*c + a*d)*e^(7/2)*Sqrt[1
 - (d*x^2)/c]*EllipticPi[-((Sqrt[b]*Sqrt[c])/(Sqrt[a]*Sqrt[d])), ArcSin[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])]
, -1])/(4*b*d^(1/4)*(b*c - a*d)^2*Sqrt[c - d*x^2]) - (c^(1/4)*(5*b*c + a*d)*e^(7/2)*Sqrt[1 - (d*x^2)/c]*Ellipt
icPi[(Sqrt[b]*Sqrt[c])/(Sqrt[a]*Sqrt[d]), ArcSin[(d^(1/4)*Sqrt[e*x])/(c^(1/4)*Sqrt[e])], -1])/(4*b*d^(1/4)*(b*
c - a*d)^2*Sqrt[c - d*x^2])

Rule 227

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[Rt[-b, 4]*(x/Rt[a, 4])], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 230

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + b*(x^4/a)]/Sqrt[a + b*x^4], Int[1/Sqrt[1 + b*(x^4/
a)], x], x] /; FreeQ[{a, b}, x] && NegQ[b/a] &&  !GtQ[a, 0]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1
- Rt[-d/c, 2]*x^2)), x], x] + Dist[1/(2*c), Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-d/c, 2]*x^2)), x], x] /; FreeQ[{a,
 b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 477

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{k = Deno
minator[m]}, Dist[k/e, Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/e^n))^p*(c + d*(x^(k*n)/e^n))^q, x], x, (e*
x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && FractionQ[m] && Intege
rQ[p]

Rule 481

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-a)*e^(
2*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c - a*d)*(p + 1))), x] + Dist[e^
(2*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1)
+ (a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0]
 && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 541

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[(
-(b*e - a*f))*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*n*(b*c - a*d)*(p + 1))), x] + Dist[1/(a*n*(b*c - a
*d)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*
f)*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rule 1232

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[
a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]

Rule 1233

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Dist[Sqrt[1 + c*(x^4/a)]/Sqrt[a + c*x^4]
, Int[1/((d + e*x^2)*Sqrt[1 + c*(x^4/a)]), x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] &&  !GtQ[a, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \text {Subst}\left (\int \frac {x^8}{\left (a-\frac {b x^4}{e^2}\right )^2 \left (c-\frac {d x^4}{e^2}\right )^{3/2}} \, dx,x,\sqrt {e x}\right )}{e} \\ & = \frac {a e^3 \sqrt {e x}}{2 b (b c-a d) \left (a-b x^2\right ) \sqrt {c-d x^2}}-\frac {e^3 \text {Subst}\left (\int \frac {a c+\frac {(4 b c+a d) x^4}{e^2}}{\left (a-\frac {b x^4}{e^2}\right ) \left (c-\frac {d x^4}{e^2}\right )^{3/2}} \, dx,x,\sqrt {e x}\right )}{2 b (b c-a d)} \\ & = \frac {(2 b c+a d) e^3 \sqrt {e x}}{2 b (b c-a d)^2 \sqrt {c-d x^2}}+\frac {a e^3 \sqrt {e x}}{2 b (b c-a d) \left (a-b x^2\right ) \sqrt {c-d x^2}}+\frac {e^5 \text {Subst}\left (\int \frac {-\frac {6 a b c^2}{e^2}-\frac {2 b c (2 b c+a d) x^4}{e^4}}{\left (a-\frac {b x^4}{e^2}\right ) \sqrt {c-\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{4 b c (b c-a d)^2} \\ & = \frac {(2 b c+a d) e^3 \sqrt {e x}}{2 b (b c-a d)^2 \sqrt {c-d x^2}}+\frac {a e^3 \sqrt {e x}}{2 b (b c-a d) \left (a-b x^2\right ) \sqrt {c-d x^2}}+\frac {\left ((2 b c+a d) e^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {c-\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{2 b (b c-a d)^2}-\frac {\left (a (5 b c+a d) e^3\right ) \text {Subst}\left (\int \frac {1}{\left (a-\frac {b x^4}{e^2}\right ) \sqrt {c-\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{2 b (b c-a d)^2} \\ & = \frac {(2 b c+a d) e^3 \sqrt {e x}}{2 b (b c-a d)^2 \sqrt {c-d x^2}}+\frac {a e^3 \sqrt {e x}}{2 b (b c-a d) \left (a-b x^2\right ) \sqrt {c-d x^2}}-\frac {\left ((5 b c+a d) e^3\right ) \text {Subst}\left (\int \frac {1}{\left (1-\frac {\sqrt {b} x^2}{\sqrt {a} e}\right ) \sqrt {c-\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{4 b (b c-a d)^2}-\frac {\left ((5 b c+a d) e^3\right ) \text {Subst}\left (\int \frac {1}{\left (1+\frac {\sqrt {b} x^2}{\sqrt {a} e}\right ) \sqrt {c-\frac {d x^4}{e^2}}} \, dx,x,\sqrt {e x}\right )}{4 b (b c-a d)^2}+\frac {\left ((2 b c+a d) e^3 \sqrt {1-\frac {d x^2}{c}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {d x^4}{c e^2}}} \, dx,x,\sqrt {e x}\right )}{2 b (b c-a d)^2 \sqrt {c-d x^2}} \\ & = \frac {(2 b c+a d) e^3 \sqrt {e x}}{2 b (b c-a d)^2 \sqrt {c-d x^2}}+\frac {a e^3 \sqrt {e x}}{2 b (b c-a d) \left (a-b x^2\right ) \sqrt {c-d x^2}}+\frac {\sqrt [4]{c} (2 b c+a d) e^{7/2} \sqrt {1-\frac {d x^2}{c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{2 b \sqrt [4]{d} (b c-a d)^2 \sqrt {c-d x^2}}-\frac {\left ((5 b c+a d) e^3 \sqrt {1-\frac {d x^2}{c}}\right ) \text {Subst}\left (\int \frac {1}{\left (1-\frac {\sqrt {b} x^2}{\sqrt {a} e}\right ) \sqrt {1-\frac {d x^4}{c e^2}}} \, dx,x,\sqrt {e x}\right )}{4 b (b c-a d)^2 \sqrt {c-d x^2}}-\frac {\left ((5 b c+a d) e^3 \sqrt {1-\frac {d x^2}{c}}\right ) \text {Subst}\left (\int \frac {1}{\left (1+\frac {\sqrt {b} x^2}{\sqrt {a} e}\right ) \sqrt {1-\frac {d x^4}{c e^2}}} \, dx,x,\sqrt {e x}\right )}{4 b (b c-a d)^2 \sqrt {c-d x^2}} \\ & = \frac {(2 b c+a d) e^3 \sqrt {e x}}{2 b (b c-a d)^2 \sqrt {c-d x^2}}+\frac {a e^3 \sqrt {e x}}{2 b (b c-a d) \left (a-b x^2\right ) \sqrt {c-d x^2}}+\frac {\sqrt [4]{c} (2 b c+a d) e^{7/2} \sqrt {1-\frac {d x^2}{c}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{2 b \sqrt [4]{d} (b c-a d)^2 \sqrt {c-d x^2}}-\frac {\sqrt [4]{c} (5 b c+a d) e^{7/2} \sqrt {1-\frac {d x^2}{c}} \Pi \left (-\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}};\left .\sin ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{4 b \sqrt [4]{d} (b c-a d)^2 \sqrt {c-d x^2}}-\frac {\sqrt [4]{c} (5 b c+a d) e^{7/2} \sqrt {1-\frac {d x^2}{c}} \Pi \left (\frac {\sqrt {b} \sqrt {c}}{\sqrt {a} \sqrt {d}};\left .\sin ^{-1}\left (\frac {\sqrt [4]{d} \sqrt {e x}}{\sqrt [4]{c} \sqrt {e}}\right )\right |-1\right )}{4 b \sqrt [4]{d} (b c-a d)^2 \sqrt {c-d x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 11.19 (sec) , antiderivative size = 191, normalized size of antiderivative = 0.45 \[ \int \frac {(e x)^{7/2}}{\left (a-b x^2\right )^2 \left (c-d x^2\right )^{3/2}} \, dx=-\frac {e^3 \sqrt {e x} \left (5 a \left (3 a c-2 b c x^2-a d x^2\right )+15 a c \left (-a+b x^2\right ) \sqrt {1-\frac {d x^2}{c}} \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},\frac {d x^2}{c},\frac {b x^2}{a}\right )+(2 b c+a d) x^2 \left (-a+b x^2\right ) \sqrt {1-\frac {d x^2}{c}} \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},1,\frac {9}{4},\frac {d x^2}{c},\frac {b x^2}{a}\right )\right )}{10 a (b c-a d)^2 \left (-a+b x^2\right ) \sqrt {c-d x^2}} \]

[In]

Integrate[(e*x)^(7/2)/((a - b*x^2)^2*(c - d*x^2)^(3/2)),x]

[Out]

-1/10*(e^3*Sqrt[e*x]*(5*a*(3*a*c - 2*b*c*x^2 - a*d*x^2) + 15*a*c*(-a + b*x^2)*Sqrt[1 - (d*x^2)/c]*AppellF1[1/4
, 1/2, 1, 5/4, (d*x^2)/c, (b*x^2)/a] + (2*b*c + a*d)*x^2*(-a + b*x^2)*Sqrt[1 - (d*x^2)/c]*AppellF1[5/4, 1/2, 1
, 9/4, (d*x^2)/c, (b*x^2)/a]))/(a*(b*c - a*d)^2*(-a + b*x^2)*Sqrt[c - d*x^2])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(955\) vs. \(2(332)=664\).

Time = 3.18 (sec) , antiderivative size = 956, normalized size of antiderivative = 2.28

method result size
elliptic \(\frac {\sqrt {e x}\, \sqrt {\left (-d \,x^{2}+c \right ) e x}\, \left (\frac {a \,e^{3} \sqrt {-d e \,x^{3}+c e x}}{2 \left (a d -b c \right )^{2} \left (-b \,x^{2}+a \right )}+\frac {e^{4} x c}{\left (a d -b c \right )^{2} \sqrt {-\left (x^{2}-\frac {c}{d}\right ) d e x}}+\frac {\sqrt {c d}\, \sqrt {\frac {d x}{\sqrt {c d}}+1}\, \sqrt {-\frac {2 d x}{\sqrt {c d}}+2}\, \sqrt {-\frac {d x}{\sqrt {c d}}}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {c d}}{d}\right ) d}{\sqrt {c d}}}, \frac {\sqrt {2}}{2}\right ) a \,e^{4}}{4 \sqrt {-d e \,x^{3}+c e x}\, \left (a d -b c \right )^{2} b}+\frac {\sqrt {c d}\, \sqrt {\frac {d x}{\sqrt {c d}}+1}\, \sqrt {-\frac {2 d x}{\sqrt {c d}}+2}\, \sqrt {-\frac {d x}{\sqrt {c d}}}\, F\left (\sqrt {\frac {\left (x +\frac {\sqrt {c d}}{d}\right ) d}{\sqrt {c d}}}, \frac {\sqrt {2}}{2}\right ) c \,e^{4}}{2 d \sqrt {-d e \,x^{3}+c e x}\, \left (a d -b c \right )^{2}}+\frac {a^{2} e^{4} \sqrt {c d}\, \sqrt {\frac {d x}{\sqrt {c d}}+1}\, \sqrt {-\frac {2 d x}{\sqrt {c d}}+2}\, \sqrt {-\frac {d x}{\sqrt {c d}}}\, \Pi \left (\sqrt {\frac {\left (x +\frac {\sqrt {c d}}{d}\right ) d}{\sqrt {c d}}}, -\frac {\sqrt {c d}}{d \left (-\frac {\sqrt {c d}}{d}-\frac {\sqrt {a b}}{b}\right )}, \frac {\sqrt {2}}{2}\right )}{8 b \left (a d -b c \right )^{2} \sqrt {a b}\, \sqrt {-d e \,x^{3}+c e x}\, \left (-\frac {\sqrt {c d}}{d}-\frac {\sqrt {a b}}{b}\right )}+\frac {5 a \,e^{4} \sqrt {c d}\, \sqrt {\frac {d x}{\sqrt {c d}}+1}\, \sqrt {-\frac {2 d x}{\sqrt {c d}}+2}\, \sqrt {-\frac {d x}{\sqrt {c d}}}\, \Pi \left (\sqrt {\frac {\left (x +\frac {\sqrt {c d}}{d}\right ) d}{\sqrt {c d}}}, -\frac {\sqrt {c d}}{d \left (-\frac {\sqrt {c d}}{d}-\frac {\sqrt {a b}}{b}\right )}, \frac {\sqrt {2}}{2}\right ) c}{8 \left (a d -b c \right )^{2} \sqrt {a b}\, d \sqrt {-d e \,x^{3}+c e x}\, \left (-\frac {\sqrt {c d}}{d}-\frac {\sqrt {a b}}{b}\right )}-\frac {a^{2} e^{4} \sqrt {c d}\, \sqrt {\frac {d x}{\sqrt {c d}}+1}\, \sqrt {-\frac {2 d x}{\sqrt {c d}}+2}\, \sqrt {-\frac {d x}{\sqrt {c d}}}\, \Pi \left (\sqrt {\frac {\left (x +\frac {\sqrt {c d}}{d}\right ) d}{\sqrt {c d}}}, -\frac {\sqrt {c d}}{d \left (-\frac {\sqrt {c d}}{d}+\frac {\sqrt {a b}}{b}\right )}, \frac {\sqrt {2}}{2}\right )}{8 b \left (a d -b c \right )^{2} \sqrt {a b}\, \sqrt {-d e \,x^{3}+c e x}\, \left (-\frac {\sqrt {c d}}{d}+\frac {\sqrt {a b}}{b}\right )}-\frac {5 a \,e^{4} \sqrt {c d}\, \sqrt {\frac {d x}{\sqrt {c d}}+1}\, \sqrt {-\frac {2 d x}{\sqrt {c d}}+2}\, \sqrt {-\frac {d x}{\sqrt {c d}}}\, \Pi \left (\sqrt {\frac {\left (x +\frac {\sqrt {c d}}{d}\right ) d}{\sqrt {c d}}}, -\frac {\sqrt {c d}}{d \left (-\frac {\sqrt {c d}}{d}+\frac {\sqrt {a b}}{b}\right )}, \frac {\sqrt {2}}{2}\right ) c}{8 \left (a d -b c \right )^{2} \sqrt {a b}\, d \sqrt {-d e \,x^{3}+c e x}\, \left (-\frac {\sqrt {c d}}{d}+\frac {\sqrt {a b}}{b}\right )}\right )}{e x \sqrt {-d \,x^{2}+c}}\) \(956\)
default \(\text {Expression too large to display}\) \(2518\)

[In]

int((e*x)^(7/2)/(-b*x^2+a)^2/(-d*x^2+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/e/x*(e*x)^(1/2)/(-d*x^2+c)^(1/2)*((-d*x^2+c)*e*x)^(1/2)*(1/2/(a*d-b*c)^2*a*e^3*(-d*e*x^3+c*e*x)^(1/2)/(-b*x^
2+a)+e^4*x*c/(a*d-b*c)^2/(-(x^2-c/d)*d*e*x)^(1/2)+1/4*(c*d)^(1/2)*(d*x/(c*d)^(1/2)+1)^(1/2)*(-2*d*x/(c*d)^(1/2
)+2)^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)/(-d*e*x^3+c*e*x)^(1/2)*EllipticF(((x+1/d*(c*d)^(1/2))*d/(c*d)^(1/2))^(1/2)
,1/2*2^(1/2))*a*e^4/(a*d-b*c)^2/b+1/2/d*(c*d)^(1/2)*(d*x/(c*d)^(1/2)+1)^(1/2)*(-2*d*x/(c*d)^(1/2)+2)^(1/2)*(-d
*x/(c*d)^(1/2))^(1/2)/(-d*e*x^3+c*e*x)^(1/2)*EllipticF(((x+1/d*(c*d)^(1/2))*d/(c*d)^(1/2))^(1/2),1/2*2^(1/2))*
c*e^4/(a*d-b*c)^2+1/8*a^2*e^4/b/(a*d-b*c)^2/(a*b)^(1/2)*(c*d)^(1/2)*(d*x/(c*d)^(1/2)+1)^(1/2)*(-2*d*x/(c*d)^(1
/2)+2)^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)/(-d*e*x^3+c*e*x)^(1/2)/(-1/d*(c*d)^(1/2)-1/b*(a*b)^(1/2))*EllipticPi(((x
+1/d*(c*d)^(1/2))*d/(c*d)^(1/2))^(1/2),-1/d*(c*d)^(1/2)/(-1/d*(c*d)^(1/2)-1/b*(a*b)^(1/2)),1/2*2^(1/2))+5/8*a*
e^4/(a*d-b*c)^2/(a*b)^(1/2)/d*(c*d)^(1/2)*(d*x/(c*d)^(1/2)+1)^(1/2)*(-2*d*x/(c*d)^(1/2)+2)^(1/2)*(-d*x/(c*d)^(
1/2))^(1/2)/(-d*e*x^3+c*e*x)^(1/2)/(-1/d*(c*d)^(1/2)-1/b*(a*b)^(1/2))*EllipticPi(((x+1/d*(c*d)^(1/2))*d/(c*d)^
(1/2))^(1/2),-1/d*(c*d)^(1/2)/(-1/d*(c*d)^(1/2)-1/b*(a*b)^(1/2)),1/2*2^(1/2))*c-1/8*a^2*e^4/b/(a*d-b*c)^2/(a*b
)^(1/2)*(c*d)^(1/2)*(d*x/(c*d)^(1/2)+1)^(1/2)*(-2*d*x/(c*d)^(1/2)+2)^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)/(-d*e*x^3+
c*e*x)^(1/2)/(-1/d*(c*d)^(1/2)+1/b*(a*b)^(1/2))*EllipticPi(((x+1/d*(c*d)^(1/2))*d/(c*d)^(1/2))^(1/2),-1/d*(c*d
)^(1/2)/(-1/d*(c*d)^(1/2)+1/b*(a*b)^(1/2)),1/2*2^(1/2))-5/8*a*e^4/(a*d-b*c)^2/(a*b)^(1/2)/d*(c*d)^(1/2)*(d*x/(
c*d)^(1/2)+1)^(1/2)*(-2*d*x/(c*d)^(1/2)+2)^(1/2)*(-d*x/(c*d)^(1/2))^(1/2)/(-d*e*x^3+c*e*x)^(1/2)/(-1/d*(c*d)^(
1/2)+1/b*(a*b)^(1/2))*EllipticPi(((x+1/d*(c*d)^(1/2))*d/(c*d)^(1/2))^(1/2),-1/d*(c*d)^(1/2)/(-1/d*(c*d)^(1/2)+
1/b*(a*b)^(1/2)),1/2*2^(1/2))*c)

Fricas [F(-1)]

Timed out. \[ \int \frac {(e x)^{7/2}}{\left (a-b x^2\right )^2 \left (c-d x^2\right )^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((e*x)^(7/2)/(-b*x^2+a)^2/(-d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {(e x)^{7/2}}{\left (a-b x^2\right )^2 \left (c-d x^2\right )^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((e*x)**(7/2)/(-b*x**2+a)**2/(-d*x**2+c)**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(e x)^{7/2}}{\left (a-b x^2\right )^2 \left (c-d x^2\right )^{3/2}} \, dx=\int { \frac {\left (e x\right )^{\frac {7}{2}}}{{\left (b x^{2} - a\right )}^{2} {\left (-d x^{2} + c\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((e*x)^(7/2)/(-b*x^2+a)^2/(-d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((e*x)^(7/2)/((b*x^2 - a)^2*(-d*x^2 + c)^(3/2)), x)

Giac [F]

\[ \int \frac {(e x)^{7/2}}{\left (a-b x^2\right )^2 \left (c-d x^2\right )^{3/2}} \, dx=\int { \frac {\left (e x\right )^{\frac {7}{2}}}{{\left (b x^{2} - a\right )}^{2} {\left (-d x^{2} + c\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((e*x)^(7/2)/(-b*x^2+a)^2/(-d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

integrate((e*x)^(7/2)/((b*x^2 - a)^2*(-d*x^2 + c)^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(e x)^{7/2}}{\left (a-b x^2\right )^2 \left (c-d x^2\right )^{3/2}} \, dx=\int \frac {{\left (e\,x\right )}^{7/2}}{{\left (a-b\,x^2\right )}^2\,{\left (c-d\,x^2\right )}^{3/2}} \,d x \]

[In]

int((e*x)^(7/2)/((a - b*x^2)^2*(c - d*x^2)^(3/2)),x)

[Out]

int((e*x)^(7/2)/((a - b*x^2)^2*(c - d*x^2)^(3/2)), x)